Hydrogen storage and the 18-electron rule.

نویسندگان

  • Boggavarapu Kiran
  • Anil K Kandalam
  • Puru Jena
چکیده

We show that the 18-electron rule can be used to design new organometallic systems that can store hydrogen with large gravimetric density. In particular, Ti containing organic molecules such as C(4)H(4), C(5)H(5), and C(8)H(8) can store up to 9 wt % hydrogen, which meets the Department of Energy target for the year 2015. More importantly, hydrogen in these materials is stored in molecular form with an average binding energy of about 0.55 eV /H(2) molecule, which is ideal for fast kinetics. Using molecular orbitals we have analyzed the maximum number of H(2) molecules that can be adsorbed as well as the nature of their bonding and orientation. The charge transfer from the H(2) bonding orbital to the empty d(xy) and d(x(2)-y(2) ) orbitals of Ti has been found to be singularly responsible for the observed binding of the hydrogen molecule. It is argued that early transition metals are better suited for optimal adsorption/desorption of hydrogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECT OF MISH METAL TYPE ON THE MICROSTRUCTURE AND ABSORPTION/DESORPTION CHARACTERISTICS OF MMNI5 HYDROGEN STORAGE ALLOY

In this article, the effects of Pr and Nd were investigated on the microstructure and absorption/desorption characteristics of MmNi5 hydrogen storage alloy. The alloys were prepared in Vacuum induction furnace and the microstructures and phases were analyzed using scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDS) and X-ray diffraction (XRD). Hydrogen absorp...

متن کامل

"Physical properties and electronic structure of LaNi5 compound before and after hydrogenation: An experimental and theoretical approach"

The present study deals with the experimental and theoretical approaches of LaNi5 hydrogen storage alloy. The structural, morphological and hydrogenation characterization of this sample which is synthesized by the arc melting technique were carried out by X-ray diffraction, scanning electron microscopy and a homemade Sievert's type apparatus, respectively. The results showed that after several ...

متن کامل

Gravimetric storage capacity of Hydrogen on C24H12 Coronene and its Si substituted at 298 K, a Monte Carlo Simulation

In this study, the radial distribution and gravimetric storage capacities of hydrogen on coronene (C24H12) and its Si substituted forms, C24H12, C24-nSinH12 (n= 4-24), have been investigated at 298 K and 0.1 MPa (standard situation) using (N,V,T) Monte Carlo simulation by Lennard-Jones (LJ) 12-6 potential. The results show that the increase of number of silicon substitution doesn’t have any eff...

متن کامل

Gravimetric storage capacity of Hydrogen on C24H12 Coronene and its Si substituted at 298 K, a Monte Carlo Simulation

In this study, the radial distribution and gravimetric storage capacities of hydrogen on coronene (C24H12) and its Si substituted forms, C24H12, C24-nSinH12 (n= 4-24), have been investigated at 298 K and 0.1 MPa (standard situation) using (N,V,T) Monte Carlo simulation by Lennard-Jones (LJ) 12-6 potential. The results show that the increase of number of silicon substitution doesn’t have any eff...

متن کامل

Hydrogen Desorption Properties of Nanocrystalline MgH2-10 wt.% ZrB2 Composite Prepared by Mechanical Alloying

Storage of hydrogen is one of the key challenges in developing hydrogen economy. Magnesium hydride (MgH2) is an attractive candidate for solid-state hydrogen storage for on-board applications. In this study, 10 wt.% ZrB2 was co-milled with magnesium hydride at different milling times to produce nanocrystalline composite powder. The effect of milling time and additive on the hydrogen desorption...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 124 22  شماره 

صفحات  -

تاریخ انتشار 2006